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Explaining population booms 
and busts in Mid‑Holocene Europe
Dániel Kondor 1*, James S. Bennett 2, Detlef Gronenborn 3, Nicolas Antunes 3, 
Daniel Hoyer 4,5 & Peter Turchin 1

Archaeological evidence suggests that the population dynamics of Mid‑Holocene (Late Mesolithic 
to Initial Bronze Age, ca. 7000–3000 BCE) Europe are characterized by recurrent booms and busts 
of regional settlement and occupation density. These boom‑bust patterns are documented in the 
temporal distribution of 14C dates and in archaeological settlement data from regional studies. We 
test two competing hypotheses attempting to explain these dynamics: climate forcing and social 
dynamics leading to inter‑group conflict. Using the framework of spatially‑explicit agent‑based 
models, we translated these hypotheses into a suite of explicit computational models, derived 
quantitative predictions for population fluctuations, and compared these predictions to data. We 
demonstrate that climate variation during the European Mid‑Holocene is unable to explain the 
quantitative features (average periodicities and amplitudes) of observed boom‑bust dynamics. 
In contrast, scenarios with social dynamics encompassing density‑dependent conflict produce 
population patterns with time scales and amplitudes similar to those observed in the data. These 
results suggest that social processes, including violent conflict, played a crucial role in the shaping of 
population dynamics of European Mid‑Holocene societies.

During the Mid-Holocene (ca. 7000–3000 BCE) early farmers expanded from Western Anatolia and spread 
throughout Europe into a world of hunter-gatherers1. Archaeological evidence of regional and local settlement 
patterns has established the existence of regional population booms and busts during this  period2–6 (see examples 
in Fig. 1). Analysis of these data reveals a consistent pattern, in which most regions undergo a well-characterized 
population boom after the arrival of the first farmers, followed by a decline within a few hundred years. On 
local and regional scales archaeological evidence indicates that settlements grew (in numbers and size) over the 
course of several generations before declining or even being  abandoned7–11. This initial dynamic was followed 
throughout the Neolithic into the Bronze Age by recurrent regional population booms and busts, superimposed 
on an overall increasing population  trend5,12.

Boom and bust dynamics are also evident in large-scale radiocarbon (14C) data sets covering Mid-Holocene 
Europe. A statistical analysis of Summed Probability Distribution (SPD) of 14C data over different spatial scales 
(see Materials and Methods) suggests that regional boom and bust dynamics are characterized by long-term 
oscillations of characteristic periods and amplitudes (Fig. 2). In particular, half-cycle periods (estimated by the 
first minimum of the Autocorrelation Function, ACF) cluster around 500 years (Fig. 2b,c). Typical coefficients 
of variance (CV), a measure of oscillation amplitude, are 0.25 or more (Fig. 2d).

While much has been written on the collapse of centralized societies ranging from  chiefdoms15,16 to large-
scale states and  empires17–19, mechanisms leading to recurrent population busts in small-scale farming societies 
have only recently been  addressed5,8,20–22. One prominent hypothesis proposes changing climate as the major 
exogenous  driver23–26. Other investigators argued that climate change had only limited effects on early farming 
 societies21,27–30 and that booms and busts are mainly a result of endogenous processes  instead20.

Such endogenous processes involve dynamical feedbacks between the affected populations and their envi-
ronment (whether physical or social) and can be described as second-order dynamical models. Long studied in 
ecology, especially in the context of resource-consumer population  interactions31, these models have not been 
fully appreciated when considering human  populations19,32. A key component of such models is that population 
density interacts with another dynamic variable, waxing and waning on a similar time scale. Several possibilities 
for such interactions have been proposed. For example, several authors have developed models of populations 
interacting with renewable natural resources that can potentially generate sustained second-order  cycles33–36. 
However,  elsewhere37 we show that, contrary to these works, the dynamical interaction between farmers and soil 
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nutrients cannot produce second-order cycles for a broad range of parameters that are consistent with temperate 
biomes such as within Neolithic Europe.

Another second-order process that can possibly explain the Mid-Holocene boom-bust cycles is the dynamic 
interaction between population numbers (or density) and the level of social cohesion. In this framework, high 
population densities can lead to conflicts and ultimately intensification of inter-personal  violence38. Models 
focusing on these processes emphasize the reduced viability of communities in “disintegrative”  phases2,10,20,39,40, 
often corroborated by evidence of reduced trade networks and growing  inequality9,11,22,41,42. Disintegrative phases 
are often accompanied by an intensification of inter-personal violence, both within and between  groups23,43–47. 
While intensity of inter-group conflicts exhibits substantial variation in time, several recent studies have linked 
settlement abandonment and population decline in different world regions to periods when intergroup conflict 
 spikes20,44,45,48.

While hypotheses attempting to explain population dynamics in Mid-Holocene Europe have been much dis-
cussed, they have not yet been tested in a large-scale analysis that compares model predictions with data. Deriv-
ing quantitative predictions from explicit models is a necessary step when testing hypotheses about population 
dynamics because verbal reasoning may  mislead49. Here we focus on the two rival (but not mutually-exclusive) 
hypotheses outlined above: population fluctuations in Mid-Holocene Europe were driven (1) by an exogenous 
process, climate change; or (2) by an endogenous process, density-dependent social disintegration and conflict. 
We have developed an agent-based model that incorporates the effect of climate and density-dependent conflict 
in an abstract representation and compare simulation results with the 14C data-derived statistics (Fig. 2). Our 
model does not assume these processes act independently of one another. However, by building the model in 
a flexible way that allows disabling the separate process components, we are able to test which are essential to 
reproducing observed demographic processes at the correct time scales. While 14C data is less accurate than 
indicators of settlement patterns compiled from archaeological reports, it allows us to perform a systematic 
analysis of temporal patterns across a broad study area (Europe between 7000 BCE and 3000 BCE) and perform 
quantitative comparisons with model outputs.

Results
Modeling population dynamics. To investigate the effect of the mechanisms outlined above, we devel-
oped a spatially-explicit agent-based model that tracks the spread of farming groups along with a set of pos-
sible interactions among them. The temporal focus of our investigation is the mid-Holocene (7000–3000 BCE), 

Figure 1.  Archaeological proxies for population dynamics in western and central Europe during the Mid-
Holocene. (a) Settlement counts associated with the Pfyn culture, data  from10 (b) The number of occupied 
sites in central Germany (Hesse), data  from13; (c) Estimated population density in the lower Rhine region, data 
 from14; (d) Long-term reconstruction of population density in north-central Switzerland, data  from6. Dashed 
lines in panels (c) and (d) represent the range of uncertainty given by the authors in the original publications.
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roughly the period from the first evidence of agriculture in Europe to the beginnings of the Bronze Age. The 
simulation space includes most of Europe, excluding northeastern areas where spread of agriculture occurred 
later than our period (Fig. 3). Our simulation represents this area as discrete units (“cells”) using an equal-area 
hexagon  grid50,51. Each cell is either empty, or is occupied by an independent group of farmers (a “village”).

The simulation progresses in one-year discrete timesteps and has two components that are evaluated each 
year. In the population component, the number of farmers in a cell is modeled as a logistic growth process with 
carrying capacity that varies in space and time. Spatial variation is based on relative variability of agricultural 
productivity in Europe according FAO  GAEZ52,53. Temporal variation is based on climate variability and was 
estimated with a combination of a crop yield  emulator54 and a paleoclimate  dataset55. These procedures are 
explained in more detail in the Materials and Methods and SI Appendix. Temporal variability of climate effects 
on yield is scalable with a simulation parameter, s (see Materials and Methods for more details). Setting s = 0 
eliminates this variance and thus the effects of climate on the simulation.

In the interaction component of the simulation, the population of cells can split, migrate, and, optionally, 
engage in inter-group conflict. These events happen stochastically. For each cell, the probability of a population 
split increases with population size (see Materials and Methods, Eq. 2). The result of a split is that a fraction 
of the cell’s occupants attempts to migrate to a new location. The target cell is selected randomly, in a process 
influenced by distance, suitability for agriculture, and occupation status. Specifically, the probability of selecting 
an already occupied cell is given by pE . Based on the value of pE and the resulting interactions, our model has 
two main variants: 

1. If pE = 0 , only empty cells can be selected as targets. If no suitable empty cell is found, the split-off event is 
canceled (no migration occurs). In this variant, no conflict occurs and population numbers are solely affected 
by agricultural productivity and, via s, any variation to it due to climate.

2. If pE > 0 and an occupied cell is selected as a target, it is assumed that a conflict between the cells ensues. 
Beyond the confrontation itself, with probability pC , the group winning the conflict becomes “militarized” 
and will continue attacking other neighbors, with a yearly rate of pA ; we refer to such cells as “aggressors”. 
Subsequent attacks by aggressors can thus create additional aggressors causing conflict to spread. Aggres-
sors revert back to peaceful farmers either spontaneously with rate pR , or if they are unable to find a cell 

Figure 2.  Cyclic patterns in European Mid-Holocene radiocarbon data. (a) Examples of SPD time series 
in different regions. (b) Autocorrelation functions (ACF) for these regional SPD time series. (c) Aggregate 
frequency distribution of the first minimum lag for ACFs from regions containing at least 500 data points over 
overlapping regions with a linear size of 500 km (n = 550). (d) Aggregate frequency distribution of coefficients 
of variations of SPD times series for these regions (n = 550). Additional regional SPDs and ACFs are displayed 
in Figs. S8 and S9 in the SI Appendix; disaggregated frequency distributions of ACF minima and CV values are 
displayed in Fig. S6 in the SI Appendix.
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within range to attack. In this model variant, the number of aggressor cells (and thus the amount of violent 
conflict) acts as a dynamic variable: its level increases in response to high occupation density (with a rate 
that is determined by the pE parameter) and decreases at a relatively constant rate.

Note that in the case of pC = 0 conflict occurs but aggressors are not created. In this case, conflict is not a dynamic 
variable (the model is first-order) and the level of violence is determined solely by the density of occupied cells.

Our model necessarily abstracts the interaction mechanisms to capture the essential demographic effects with-
out representing the detailed social and ecological processes that show significant variation in the study period 
and  area1,56,57. While our abstractions cannot capture the full richness of environmental and social interactions 
of the period, we believe they are overall consistent with archaeological knowledge.

Group fission and onward migration was an important aspect of at least the early Neolithic, and likely con-
tributed to the brisk spread of agriculture in  Europe30,41,58. Several authors have linked group fission and onward 
migration to competition over a limited set of local resources and as a way of avoiding intra-group  conflicts41,59; 
we represent this by requiring that group fission probabilities increase with group size, consistent with “scalar 
stress” models as  well60,61. However, founding a new agricultural settlement required a considerable effort and 
likely required several years of preparation, potentially including a “pilot”  phase62, and involved a significant part 
of the  group58. While we do not model these details directly, these considerations inform our model. Specifically, 
we limit the probability of split-off events so they occur roughly once every 8 years, and we choose the migrating 
group size to be roughly half of the population of the origin cell.

Similarly, our understanding of conflicts in small-scale societies informs our probabilistic modeling of these 
interactions. Based on ethnographic evidence, it is clear that most instances of conflict between small-scale 
societies and entailing inter-personal violence result only in a small number of casualties; nevertheless, ambushes 
and massacres happen, albeit  infrequently63,64, with considerable evidence of such events in Mid-Holocene 
 Europe23,43–47. Thus, the build-up to large-scale violent confrontations can take several years in which enmity 
is persistent. At the same time, repeated conflicts have been suggested to further limit population numbers by 
restricting settlements to defensible locations and the creation of “buffer zones” between groups, thus decreasing 
the effective carrying capacity of the  landscape49,65–67.

In our model however, we abstract away the multitude of ways in which conflicts arise and affect population 
numbers and focus only on confrontations that either result in complete disintegration (when the attackers 
win), or in the creation of additional aggressors (when the defenders win); thus the pA parameter in the model 
represents how often lingering enmity escalates to such large-scale events. At the same time, although the end 
result is potentially the termination of a group, it does not imply that all individuals in it are killed; survivors 
may disperse as refugees to other settlements where they possibly have relatives or friends or are adopted into 
the winning group, initially as subordinate  members68,69. We do not model such dispersal explicitly, instead 
simplifying this process by going directly to the end result (complete disintegration of one of the conflict parties 
or creation of more aggressors). In this manner, our model captures the essential dynamical feedback between 
population numbers and conflict, as increased levels of conflict directly lead to population declines.

Figure 3.  Illustration of the study area. Hexagon cells are colored according to their carrying capacity. The 
hexagon grid was created with the DGGRID  software50,51 as described in the article text. Figure was generated 
with R (version 4.1.2, available at https:// www.r- proje ct. org/), using the ggplot2 package (version 3.3.5, 
available at https:// ggplo t2. tidyv erse. org/).

https://www.r-project.org/
https://ggplot2.tidyverse.org/
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All simulation parameters and their typical values are summarized in Table 2 in the Materials and Methods 
section. The simulation results below reflect sets of parameter combinations that are both representative of the 
behavior of model variants and plausible for Mid-Holocene Europe; an exploration of the larger parameter space 
is done in the SI Appendix (Figs. S14–S41).

Climate forcing is unable to produce population cycles. In the first variant of the model there is 
no conflict between cells and regional populations fluctuate solely in response to the effect of climate varia-
tion on carrying capacity. As explained in the SI, we estimated the effect of climate on temporal variation in 
each simulation cell’s productivity by using historical climate data of Armstrong et al.55 and a yield emulator of 
Franke et al.54, which translated temperature and rainfall data into agricultural productivity in each cell for each 
year during the modeled period. This procedure yielded an average year-to-year coefficient of variation of 5.8% . 
Further, we investigated whether assuming an even stronger climate effect could result in boom-bust patterns 
similar to the observed ones. Specifically, we doubled, tripled and quadrupled the strength of the climate effect 
( s = 2, 3 and 4; see Materials and Methods, Eq. (1)). Here we report the results for s = 2 , while the SI Appendix 
gives the results for s = 1, 3 and 4.

Figure 4 shows the results from a simulation with s = 2 . Panel (a) shows example regional population trajec-
tories (calculated for regions with a linear size of 500 km; see Materials and Methods for details). Supplementary 
Videos S1 and S2 show example model realizations for parameters G = 40 km and s = 2, 4 respectiely. Model-
predicted trajectories in Fig. 4a are roughly S-shaped with fluctuations around that trend, as would be expected 
from a noisy logistic growth process. Variation in the timing of peak populations is due to the arrival times of 
first farmers into a region. The (stochastic) equilibrium levels are primarily determined by the number of habit-
able cells in the region and their suitability for agriculture. The impact of climatic variation on population is 
visible as high frequency variation around the overall logistic pattern. Overall larger variations (i.e., higher values 
of the s parameter) result in lower total population (see the SI Appendix, Fig. S10). This is the result of larger 
climatic “shocks” causing more rapid population loss that can only be partially restored by population growth 
during climatic upturns. Such lower overall population numbers also translate into a slower spread of farming 

Figure 4.  Simulated regional populations under climate variation ( s = 2 ) and no inter-group conflict ( pE = 0 ). 
(a) Example simulated population time series from different regions for one simulation realization and one grid 
position. (b) Autocorrelation functions (ACF) for each example (detrended) regional population time series 
(example time series and ACFs for a larger set of regions and additional s values are shown in Figs. S10–S11 
in the SI Appendix). (c) Aggregate frequency distribution of the first minimum lag for ACFs over overlapping 
analysis grids of 500 km linear size (red). The distribution shows aggregate results of 100 repeated realizations 
of the simulation. Grey frequency distribution from observed radiocarbon data from Fig 2c. (d) Aggregate 
frequency distribution of coefficients of variations over overlapping grids in 100 simulation realizations (red). 
Grey frequency distribution from observed radiocarbon data from Fig 2d.
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(as lower cell populations translate to lower chance of split-off and migration), an effect that can be compensated 
for by increasing the characteristic distance of migrations (see section 2 and Fig. S5 in the SI Appendix, also 
Supplementary Videos S1–S2).

We analyzed temporal patterns in the simulation results identically to the procedure used to characterize 
the radiocarbon data as shown in Fig. 2. The analysis shows no evidence for longer-term booms and busts. The 
ACFs show a sharp spike in the frequency distribution around 200 years (Fig. 4c), indicating the dominance 
of short-term fluctuations, compared to the peak of 500 years in the case of the radiocarbon data. At the same 
time, typical CV values (Fig. 4d) are below 0.2, significantly lower than the values estimated from the radiocar-
bon dataset. These results are robust with respect to variations in the s and other simulation parameters (see SI 
Appendix, Fig. S14).

These results suggest that the modeled effect of relatively high-frequency climate variations is unable to 
explain, on its own, the population dynamics observed in our study period. While climate downturns (or 
“shocks”) can result in significant population declines (via reduced carrying capacity), these ecological effects 
do not last long enough to result in the observed long population “busts” that typically last several hundred years 
in many regions. Additional possible effects of climate shocks, such as illness and decreased fertility due to poor 
nutrition, would also act only as short-term responses due to restored productivity and would not significantly 
alter these temporal dynamics. Thus, we turn to the model variant that involves long-term dynamical feedbacks, 
along with the effect of climate.

Conflict produces population cycles. Our second model variant involves social dynamics with an inten-
sification of violent confrontations and aggressor formation as a second-order dynamical process. As the popula-
tion level in a region increases, “disintegration” leading to conflict is initiated with increasing frequency. High 
level of conflict, in turn, results in substantial probability of population extinction in cells, depressing overall 
population numbers. These second-order dynamics are clearly seen in Fig. 5a,b as noisy population cycles, where 
the noise in this case is due to strong high-frequency climate variance ( s = 2 ). Supplementary Videos S3 and 

Figure 5.  Cyclic patterns in simulated regional populations under inter-group conflict ( pE = 1 ; 
pA = 1/20 years) and climate variation ( s = 2 ). (a) Example simulated population time series from different 
regions in one simulation realization and one grid position. (b) Autocorrelation functions (ACF) for each 
example (detrended) regional population time series (example time series and ACFs for a larger set of regions 
and additional s values are shown in Figs. S12–S13 in the SI Appendix). (c) Aggregate frequency distribution 
of the first minimum lag for ACFs over overlapping analysis grids of 500 km linear size among 100 repeated 
simulation realizations (red). Grey frequency distribution from observed radiocarbon data from Fig. 2c. (d) 
Aggregate frequency distribution of coefficients of variations over overlapping grids among 100 repeated 
simulation realizations. Grey frequency distribution from observed radiocarbon data from Fig. 2d. Additional 
parameters values are G = 80 km , B = 8 km , s = 2 , pS = 0.5 , pC = 1 and pR = 0.01.
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S4 also show these patterns in example simulation realizations for parameter choices (pE = 1, pA = 0.05) and 
(pE = 0.2, pA = 0.1) respectively.

Analysis of the simulated trajectories shows that the dynamics predicted by the social disintegration/conflict 
model match the quantitative characteristics in the radiocarbon data (Fig. 5c for ACFs and Fig. 5d for CV). These 
results are robust to variations in the model parameters. A wide range of parameter combinations yield similar 
population dynamics (see SI; Fig. S15; also S29–S38). Overall, the location of ACF minima tends to decrease, 
while CV tends to increase with increasing pA or pE . Half cycle lengths vary between 200 and 700 years for the 
range of parameters studied. Varying the characteristic migration distance has little impact on the frequency 
distribution, while decreasing the amplitude of climatic variations (s) shifts the ACF minimums more closely to 
the mode of the distribution (SI Fig. S16; see also Figs. S29–S38).

Comparing overall population levels (Figs. 4a and 5a), it is apparent that, recurrent conflict has a stronger 
effect on depressing regional population numbers than climate variation, typically by a factor of 6 under the 
nominal simulation parameters. While climatic downturns cause simulated population declines, they rarely result 
in large-scale depopulation, let alone empty areas that routinely form when conflict levels are high. Indeed, as can 
be seen in the accompanying videos, the depopulation of cells during conflict leads to large-scale spatial ’waves’ of 
conflict and accompanying empty regions sweeping through the simulation space (Supplementary Videos S3–S4). 
The spatial scale of these waves increases with decreasing frequency of attack ( pA ). With pA ≤ 0.1 (i.e., large-scale 
confrontations happen every 10 years on average) large scale ( 1000 km2 ) spatial patterns are typical. Depend-
ing on the simulation parameters, conflict is triggered at different occupation densities. For larger values of pE , 
conflict erupts when there is still ample available unsettled land, thus the landscape is never fully occupied over 
the course of the simulation. Our model of recurrent violent conflict, therefore, offers one possible explanation 
for the growing body of archaeological evidence that during the earlier Neolithic small, densely occupied areas 
were surrounded by zones of land suitable for agriculture, yet  unsettled7,9,14,67.

To separate the impact of climate variation from the dynamics of density-dependent conflict, we explored a 
model variant where climate variations are assumed to have no effect on agricultural productivity ( s = 0 ). The 
results (Figs. S29–S30 in the SI Appendix) show population cycles with nearly the same long-time scales. However, 
the distribution of half-cycle lengths is more sharply focused around its mode, indicating more regularity in the 
resulting dynamics. Thus, while climate variation alone appears unable to produce long-term population cycles, 
it can modulate the timing and length of conflict-induced cycles.

On the other hand, avoiding the formation of aggressors during conflict ( pC = 0 ) eliminates any second-
order dynamics and long-term population cycles are not observed (Figs. S17; S39–S41 in the SI Appendix). As 
with the first model variant without conflict, ACF distributions show peaks below 300 years, along with peaks 
in CV distributions below 0.15. This demonstrates the importance of treating recurrent conflict as a dynamic 
process whose levels change at time scales comparable to demographic processes. It also suggests that any induced 
conflict due to increased competition for reduced resources during relatively short-term climate downturns is 
not sufficient for explaining long-term population cycles.

Our second model variant assumes that aggressors are stationary and attack farmers within a maximum radius 
from their location. We also investigated a variant in which aggressors are mobile, and relocate by taking over 
the cell of their victims (see Materials and Methods). Similar patterns of booms and busts in regional population 
appear; see SI Appendix (Figs. S19–28).

Discussion
In this paper, we have investigated a suite of models for population dynamics in Mid-Holocene Europe. We model 
population spread, climate influence on agricultural productivity, and warfare. We show that climate variation 
alone is insufficient to explain the observed boom-bust dynamics, quantified using ACFs and CVs. In contrast, a 
model with inter-group conflict is capable of producing population oscillation patterns consistent with empirical 
 data2,3,9,10. Different assumptions about the mechanisms of warfare (e.g., stationary versus mobile aggressors) 
and many parameter combinations result in second-order dynamics in which oscillations have periodicities and 
amplitudes similar to observed data.

Our results are consistent with qualitative material culture-based models of cyclical processes that have been 
used to explain interrelated changes in population numbers and social cohesion on regional  scales8,10,13,20. Our 
modeled interactions between “farmers”, “migrants”, and “aggressors” are also able to produce recurrent unoc-
cupied “empty spaces” around dense settlements, as also seen in the empirical  evidence7,14,67.

Our results clearly suggest that population growth and decline dynamics in mid-Holocene Europe arise pri-
marily from a second-order dynamical process. In this article, we have focused on an abstract representation of 
density-dependent conflict that emphasizes direct casualties. Other indirect demographic effects on migration 
and birth rates stemming from the loss of social cohesion can also lead to second-order oscillations. Further 
extensions of our model could allow disentangling underlying social processes in more detail, such as the effects 
of epidemics, reduced fertility, changed migratory behavior and subsistence patterns. Such extensions will require 
a careful review of existing archaeological evidence to be able to formulate testable hypotheses about the rela-
tive importance of each factor. The growing amount of ancient DNA (aDNA) evidence that shows population 
continuity, replacement, mixing and migration  patterns70–72 will be especially valuable in testing quantitative 
predictions about the direct and indirect effects of inter-group conflicts.

While our results suggest that empirically observed boom-bust cycles in Mid-Holocene Europe arise primarily 
from endogenous dynamical processes (i.e., density-dependent conflict), this does not mean that climate did not 
play an important role for early farmers. Changes in climate affect productivity of agricultural systems and can 
cause famines, trigger conflict, or induce migration. But they cannot explain recurrent long-term population 
patterns that are observed in our data.
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Our model provides a simple yet generic framework for density-dependent social conflict without relying 
on specific interaction patterns or mechanisms that would explain the nature and background of disintegra-
tive factors. Model extensions that capture a richer set of within- and between interactions could allow draw-
ing more direct comparisons with models of cultural integration and disintegration suggested for Neolithic 
 populations10,20,22,48,73. Such extensions are likely to provide a better characterization of population densities, 
the scale of population declines, and perhaps the spatial extent of Mid-Holocene culture areas; they may also 
lend insight into the constitution and spread of societies based on farming, including indications of strong and 
systematic larger-scale cooperation as suggested by the sudden appearance of “mega-sites” and monuments 
during the 5th and 4th millennia  BCE74. Such insights could have significant implications well beyond the 
demographics of early farmers.

Methods
Characterizing Mid‑Holocene boom‑bust dynamics with radiocarbon data. As we noted in the 
Introduction, boom-bust dynamics of Mid-Holocene populations are evidenced both by archaeological data on 
settlements numbers and sizes (the number of houses), and by 14C proxies. Because settlement data are only 
available for a limited number of regions (and periods), in our comprehensive empirical test of model predic-
tions we focus on the 14C data, which are available for most of Europe, 7000–3000 BCE.

We used a database of curated radiocarbon dates provided by the c14bazAAR  R  package75 (version from 
2021-09-08; data sets included are listed in Table 1). These are supplemented by a series of published and yet 
unpublished dates from regional studies in western central  Europe76–78. In order to avoid duplicates, lab numbers 
were filtered using regular expressions, and data with the same c14age, the same standard deviation, and the 
same geographical decimal coordinates (rounded at the 3rd digit, ≈ 100m ) were eliminated. Large parts of the 
database have already undergone filtering processes in the course of the original  publications79–82. We take each 
date as a signal for a human activity, irrespective of its affiliation to the corresponding archaeological context. 
We therefore include dates which might reflect activities earlier or later than the associated features, but never-
theless signal human activity. We do not consider the inclusion of dates of possibly non-anthropogenic origin 
(e.g., incinerated roots, forest fires) as problematic.

The resulting dataset includes a total of 48,129 dates. We used a subset of 21,534 of these dates with mean 
calibrated age between 5000 and 9000 calBP, corresponding to the time period of our analysis. We compute 
summed probability distributions (SPDs) following the methodology and best practices of Crema and  Bevan83; 
specifically, we used unnormalized probability distributions after calibration, and a binning scheme based on 
the sites with a temporal resolution of h = 100 years, thus reducing potential bias from different level of artifacts 
recovered and dated among different  sites3,4.

We aggregated the SPDs (note that simulation results were treated analogously) to form regional time series 
using uniform rectangular regions of a fixed linear size, i.e., 500 km (Fig. 6). The rectangles are tiled in a grid 
covering Europe starting from its southwestern corner. The tiling is carried out in an equirectangular projec-
tion, with the tiles’ sides being parallel to circles of latitude and meridians. At each latitude, regions are scaled 
along their longitudinal axis to retain approximately the same areal size. To improve robustness of the analysis, 
we performed aggregation over repeated samplings by shifting the starting point of the tiling scheme in 100 km 
strides, yielding, a total of 25 possible tilings.

Our approach is similar to previous  studies3–5. However, instead of using predefined geographic regions, we 
use a regular tiling of different scales and grid alignments.

Table 1.  Sources of radiocarbon dates used in this study. Data set names are those defined in the c14bazAAR  
 package75.

Data set Date version References

Agrichange 2021-05-21 84

AIDA 2021-09-08 80

BDA 2020-03-29 85

Calpal 2020-08-20 86

Context 2006-09-26 http:// conte xt- datab ase. uni- koeln. de/

Eubar 2017-10-02 87, https:// telea rchae ology. org/ EUBAR/

Euroevol 2015-07-09 79

Irdd 2018-08-13 88

Katsianis 2020-08-20 89

Medafricarbon 2020-03-20 90

NERD 2021-09-08 82

Pacea 2020-01-22 91

Palmisano 2017-09-23 92

Radon Before 2021-09-08 93

Radonb Before 2021-09-08 http:// radon-b. ufg. uni- kiel. de

http://context-database.uni-koeln.de/
https://telearchaeology.org/EUBAR/
http://radon-b.ufg.uni-kiel.de
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After calculating regional SPDs, we fitted a logistic growth model for each that represents growth with no 
boom and bust patterns. To account for the effects of sampling and calibration, we follow the methodology of 
Shennan et al.3 and Downey et al.12 to generate synthetic sets of radiocarbon dates proportionally to the fitted 
model. For each region, we generated 1000 sets of synthetic dates, each set containing the same number of dates 
as the original dataset in that region. For each synthetic date, we performed an “uncalibration”, i.e., assigned a 14C 
age to it based on the calibration curve, along with an error term, sampled from the measurement errors among 
the original dataset. Using the set of uncalibrated dates, we repeated the calibration and aggregation procedure for 
each synthetic dataset, producing a synthetic SPD. We used the mean value of these synthetic SPDs to detrend the 
SPD of the original  dataset3,12, after confirming that the SPD of our dataset has statistically significant deviations 
from the set of synthetic datasets (see Fig. S8 in the SI Appendix for a comparison of synthetic SPDs to the 14C 
dataset in one grid position; also, Fig. S7 for a characterization of the deviations among all grid positions)3,12,83.

Finally, we calculated temporal autocorrelation functions (ACFs) for each detrended regional time series to 
characterize any cyclic behavior. For each individual ACF, we identify the location of the first minimum, and com-
pile a frequency distribution over all regions. For perfectly periodic data, the first maximum can be interpreted as 
the typical cycle length of the time series, while the first minimum corresponds to the typical half-cycle length. 
For more complex time series this does not necessarily hold but the half-cycle length can be a more reliable 
indicator of the typical time scales of underlying processes. For this reason, our primary statistic for comparing 
the periodic components of the dynamics in the data and in the model is the location of the first ACF minimum.

To characterize the average amplitude of both empirical and model-predicted dynamics we calculated the 
coefficient of variation (the standard deviation of the detrended time series divided by the mean of the trend). 
This measure characterizes the relative magnitude of variance while taking into account the non-stationarity 
due to long-term trends.

Figure 2a shows calculated SPDs for a sample subset of regional tiles (data for all regions are in SI Appendix 
Fig. S8). In the absence of second order boom-bust dynamics, we expect S-shaped trajectories arising from 
regional logistic growth, with random (“white noise”) fluctuations superimposed on S-curves. The most frequent 
pattern, however, is that of recurrent booms and busts that follow an initial growth after the spread of farming 
into the region. When comparing the SPD time series with the fitted trend (SI Appendix Fig. S8), booms and 
busts appear to recur on a time scale of c. 1.000 years, although with much variation around this mean value. 
This is apparent in the ACFs of the detrended time series (Fig. 2b). After aggregation of ACF minima in repeated 
tiling, their distribution has a peak at 500 years, and most common half-lengths cluster within 300–1000 year 
interval (Fig. 2c). The distribution of CVs clusters around a peak between 0.25 and 0.5 (Fig. 2d). Distributions 
in Fig. 2 (panels c and d) in the main text presents results aggregated over the 25 tiling positions that we used in 
this study. Disaggregated results, i.e., individual distribution of ACF minima and CV values in each tiling posi-
tion are shown Fig. S6 in the SI Appendix. In all grid positions, we see a similar pattern in these distributions.

Figure 6.  An example tiling of the study area, rendered using an Albers equal-area projection. Note that not 
all tiles contain valid data; in any grid position, only tiles with at least 500 radiocarbon dates were included in 
further analysis. Figure was generated with R (version 4.1.2, available at https:// www.r- proje ct. org/), using the 
ggplot2 package (version 3.3.5, available at https:// ggplo t2. tidyv erse. org/). Base map data, including modern 
country borders was obtained using the rworldmap package (version 1.3-6, available at http:// cran.r- proje ct. 
org/ web/ packa ges/ rworl dmap) and is based on public domain data from the Natural Earth project, available 
at https:// www. natur alear thdata. com/.

https://www.r-project.org/
https://ggplot2.tidyverse.org/
http://cran.r-project.org/web/packages/rworldmap
http://cran.r-project.org/web/packages/rworldmap
https://www.naturalearthdata.com/
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Model operation. We use a spatially-explicit agent-based model with a spatiotemporal focus on mid-Hol-
ocene Europe. Main model parameters are summarized in Table 2; Fig. 3 shows a representation of the simula-
tion space. We use an equal-area hexagon grid created with the DGGRID  software50,51. Hexagons have an area 
of ≈ 96 km2 (grid type: ISEA3H, resolution level: 12). The simulation area includes 33,473 cells in total, after 
accounting for coastlines and removing cells with low agricultural productivity (i.e., a carrying capacity of less 
than 50 people).

Each hexagonal cell is either empty, occupied by farmers or, optionally, occupied by “aggressors” engaging in 
regular violent conflicts. Forager groups are not included in the current simulation; it is assumed that foragers 
have significantly lower population densities than farmers and thus the interactions between these groups are 
minimal with farmers outcompeting  foragers40,94. Archaeological evidence for direct interaction among foragers 
and farmers in Europe  exists8 and conflicts are assumed to have  happened40,45,47, while archaeogenetic evidence 
currently shows that biological interaction between populations occurred largely during later  phases95,96.

Each cell in the simulation area is assumed to be an independent political unit (i.e., one “village”); the forma-
tion of larger-scale entities, such as alliances or vassal relationships are not considered. In the current work, we 
consider agricultural villages to have a typical maximal size of about 150 persons (Dunbar’s number; cf.97), con-
sistent as well with estimates for Neolithic  villages7,11,28. Size of the cells was chosen to make this number plausible, 
assuming an average population density of 1–2 persons per km2 for Neolithic  farmers14,98. See the SI Appendix 
for a more detailed description of the process of creating the cell grid and estimating local carrying capacities.

Simulations begin with an initial population located in Anatolia in the year of 7000 BCE. To account for 
the different nature of models based on whether violent conflicts are included, we used a distinct set of initial 
conditions.

• In the case of no conflicts, the simulation begins with an initial population of 100,000 people, distributed 
uniformly within a group of cells in a starting region. The large number of people is necessary to avoid a 
longer “warm-up” phase where logistic growth occurs slowly before migration begins. In this case, choice of 
the initial population size does not affect the results, only the length of the initial simulation phase.

• In the case where conflicts are allowed, the simulation begins with an initial population of 5000 people 
distributed uniformly within a random subgroup of cells in a starting region. The lower starting population 
helps ensure that cells’ population are not likely to immediately fission; the random subset of cells helps ensure 
sufficient empty space between occupied cells to avoid early eruption of high levels of violence.

Population dynamics within each cell follows a logistic growth up to a carrying capacity. We set the average car-
rying capacity of cells to 150 persons, while we allow variation both in space and time according to estimated 
suitability to agriculture and climate. Relative variation in space was estimated from a dataset of “agro-climatic 
attainable yield” applied to low-intensity, rain-fed cereal agriculture from FAO  GAEZ52,53.

Temporal variation in carrying capacities is based on a model of agriculture yield emulator of Franke et al.54 
that takes the set of main climate parameters as its input. We use the reconstruction of past climate data of 
Armstrong et al.55 as model inputs; we take the output of this procedure as a measure of relative variation of 
agricultural productivity (and thus carrying capacity) in time independently for each cell (the procedure is 
explained in more detail in the SI Appendix). To account for uncertainties in estimating the real effect of climate 
under the conditions of Mid-Holocene agriculture, we introduce an additional scaling factor, s, that adjusts the 
magnitude of variability in cell productivity. Note that s = 1 is the value that corresponds to the magnitude of 
climatic effects on carrying capacity estimated by feeding past climate data into the crop emulator. To explore the 
effects of assuming stronger climate effects, we ran models with s = 1 , 2, 3, and 4 (see the SI). In the main article 
we report results for s = 2 ; in other words, our approach is conservative with respect to rejecting the climate 
hypothesis. The time-varying carrying capacity of each cell is thus modeled according to the following formula 
(constrained to nonnegative values):

Table 2.  Summary of main model parameters and their typical values.

Parameter Description Typical value

r Base population growth rate 0.0135

α Scaling factor for group fission probabilities 1/400

N0 Minimum population for group fission 100

G Characteristic distance of migrations 40 km

pE Probability of targeting an occupied cell 1

B Characteristic distance of attacks 8 km

Bmax Maximum attack distance 80 km

pA Probability of major conflict per year 1/10 years

pS Attack success probability 0.5

pC Probability for conversion to aggressors (upon being exposed to conflict) 1

pR Aggressors’ probability of spontaneous conversion back to peaceful farmers 0.01

s Relative magnitude of agricultural productivity variation due to climate 2
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Here Gi is the (absolute) attainable productivity estimated from the FAO GAEZ dataset (obtained as multiplying 
the base yield with the land area of the cell, excluding slopes over 30%); Ai(t) is the time-varying relative yield 
in cell i, based on the yield emulator model of Franke et al.54 evaluated using the climate data from Armstrong 
et al.55. Note that the average in the denominator of the first term is calculated over all cells in the simulation area, 
while the average in the denominator with Ai is calculated for all years in the study period, but only for cell i. This 
way, the second term that corresponds to scaling by climate variations has a mean of one, i.e., it does not affect 
average carrying capacities, but only adds temporal variation. Carrying capacities are limited to non-negative 
numbers; very large downward deviations can result in zero capacity, making a cell temporarily uninhabitable. 
This does not happen when s = 1 , but is possible for larger values. Setting s = 0 results in cell carrying capacities 
being constant in time, omitting any effect of climate variation.

In the model group migration and population spread depends on split-off events. As the population of a cell 
grows, the probability of a split-off event increases according the following linear relationship:

We assume that there is a lower limit ( N0 ), below which split-off events never occur. Above this, the probabil-
ity of such events is a linear function of the population, reaching 1 if Ni = N0 + 1/α . We used N0 = 100 and 
α = 1/400 , implying that no split-off events occur for groups below 100 people, and for a group size of 150 
people a split-off event would occur on average once every 8 years, while a split-off would happen with certainty 
for a group of 500 people (a size that is not reached in our simulations due to the limited carrying capacity of 
cells). Note that our formulation is not dependent on any specific interpretation of the underlying processes 
(e.g. “approaching Dunbar’s number”), only on the generic notion that larger groups have higher probabilities of 
splitting. This is also true regarding the functional form used in Eq. (2); in the SI Appendix (Fig. S18) we show that 
using an alternate functional form where the probability of fission depends on a logistic function of  population61 
also gives similar results in terms of the time scale and amplitude of boom-bust patterns.

If a split-off event happens, the size of the subgroup is randomly chosen from a Poisson distribution with 
expected value of half the population. A target cell is selected according to the following probability distribution:

where the fij factors represent the attractiveness of each possible target cell and are calculated according to the 
following formula:

Here dij is the scaled distance between cells i and j. G determines the typical spatial scale of migrations. Kj is the 
base carrying capacity of cell j; thus cells with higher carrying capacities are preferred. Ej expresses a preference 
for empty target cells:

The parameter pE quantifies willingness to attempt to enter an occupied cell, which triggers conflict with its 
inhabitants. In the pure climate model, this parameter is set to 0, thus, no conflict occurs. In this case, if no empty 
cells are available within 10G distance, the migration attempt is canceled.

The distance between two neighboring cells is computed as the great-circle distance between their center 
points; for non-neighbor cells, the distance is computed along the shortest possible path. We only allow travel 
through land cells, coastal cells and two sea links that we added across the Aegean Sea and the Strait of Otranto 
between the Balkans and the Italian peninsula. We also treat sea travel along the coast of the Mediterranean Sea 
 specially99: distances between coastal cells and along the two sea routes are scaled by factor of 0.1 permitting 
efficient long-distance travel.

In the warfare model version, selecting an already occupied cell as migration target gives rise to conflict, 
which will eventually result in the defeat and elimination of either the previous occupants of the cell (defend-
ers), or of the attackers. In the main model variant, the winner of such a confrontation has a chance of becoming 
militarized, converting to “aggressors”. Model parameter pS gives the probability of attackers winning, and pC 
determines the probability of the winner of a conflict converting to an aggressor. Finally, parameter pR gives the 
yearly rate at which aggressors convert back to peaceful farmers. Note that if pC = 0 , then aggressors are never 
created, and the level of conflict is directly determined by the density of occupied cells and pE . In this case, our 
model is first-order, i.e., there is no memory in the process determining the level of conflict. For pC > 0 however, 
the conditions of warfare are persistent, as conflict will continue after an initial trigger and only decrease with 
the rate determined by pR.

While we assume that aggressors maintain a more violent attitude in general, we do not model the details of 
these dynamics. Instead, for each aggressor cell, we only focus on cases when a large-scale violent confronta-
tion ensues with a nearby farmer cell that has the potential of causing extinction of one party to conflict and 

(1)Ki(t) = 150
Gi
〈

Gj

〉

(
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(

Ai(t)
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resulting in winners becoming aggressors themselves. We assume that such large-scale confrontations happen 
for each aggressor cell with probability pA in each year; this means that such events happen every 1/pA years on 
average. However, this does not mean that no other confrontations happen in the meantime as there is abundant 
ethnographic evidence that warfare between small-scale societies mostly consists of events with a small number 
of casualties with only some of them escalating to large-scale ambushes and  massacres63,64. In our model, we 
abstract away the specific sequence of events, and focus only on outcomes where a settlement is either eradicated, 
or becomes militarized as it is exposed to increasing amounts of violence.

Given these considerations, for each aggressor cell, if a large-scale confrontation happens, we select its target 
in a probabilistic manner, similarly to migrating groups:

Here Fj is an indicator with the value of 1 only if cell j is occupied by farmers, and zero otherwise; this ensures 
that attacks only target farmers. Nj is current population of the cell, reflecting a preference for cells providing 
more available production. Note the the inclusion of this term is not an essential feature of the model; as we show 
in the SI Appendix (Fig. S18), we gain similar results even if aggressors do not take into account the population 
of cells when selecting targets. B establishes the characteristic distance for attacks; B is typically small reflecting 
a preference for cells that are close, but in any case, such attacks are limited to explicit cut-off distance, Bmax . If 
no attack targets are found within this maximum distance, aggressors revert back to farmers.

Similarly to conflicts triggered by split-off events, we decide the “winner” according to probability pS . If this 
is the aggressor cell, the target goes extinct (i.e., the cell becomes empty). On the other hand, if aggressors lose, 
they are not affected, but the successful defenders themselves convert to aggressors with probability pC.

In the main conflict variant aggressors are stationary and aggression spreads by possible militarization of 
attacked cells. In this case, we used parameter values of pS = 0.5 and pC = 1 , along with a rate of pR = 0.01 of 
aggressors converting back to farmers. Alternatively, aggressors can roam, i.e., after a successful attack, they move 
to the cell of their target, abandoning their original location. In this case, we used parameter values of pS = 1 , 
pC = 1 and pR = 0.01 . In this manner the number of aggressors does not grow but they spread conflict by moving 
around in the landscape. In a further variant, aggressors only move to a new cell after the initial confrontation, 
i.e. as the result of group fission. Results for these variants are shown in the SI Appendix.

Data availability
Simulations were carried out by software written by the authors. Source code is available in the respective public 
 repositories100,101. Several publicly available datasets were used in creating the simulation space. Scripts and 
detailed instructions to obtain these are available along with the simulation source  code100,101. The radiocarbon 
datasets used in this study were obtained from publicly available sources using the c14bazAAR  R  package75 
(version from 2021-09-08; data sets included are listed in Table 1) along with yet unpublished dates from regional 
studies in western central  Europe76–78. Unpublished radiocarbon dates used in this study are available from 
Dániel Kondor on request.
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